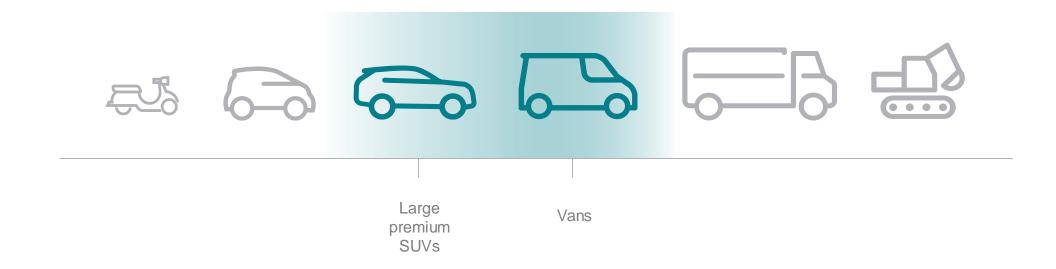
Battery and fuel cell future cost comparison

March 2023

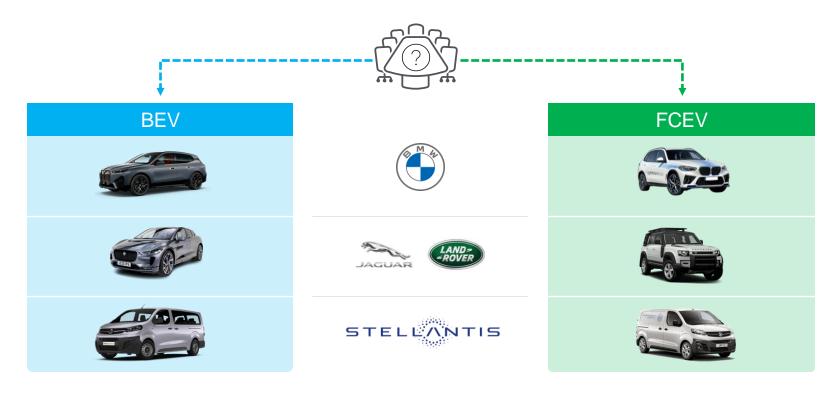
An insight report provided by the Technology Trends team at the APC


Scope of this study

The focus of this study is on installed powertrain costs for the heaviest of light duty vehicles: large premium SUVs and vans.

Typical vehicle characteristics

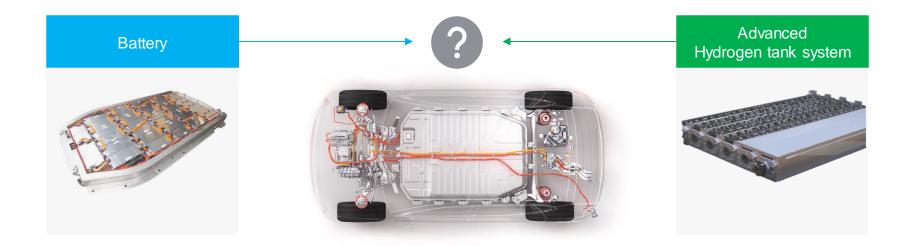
- Medium to high power (150 200 kW)
- Long ranges (300+ miles)



Source: APC Technology Trends

Some OEMs are agnostic to the choice between battery and fuel cell powertrains

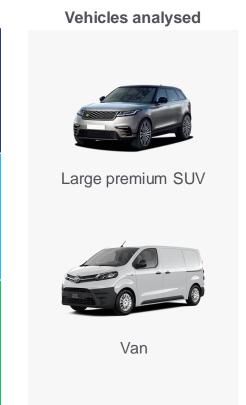
OEMs are deciding if BEVs are the best option for all vans and SUVs, or if FCEVs can better accommodate some of the more demanding journeys.


European OEMs that have publicly announced an interest in battery and fuel cell electric SUVs or vans

Developing a modular electrified platform allows greater adaptability

Major investments in BEV platforms have preceded FCEV production, but some OEMs could consider a modular electrified platform with interchangeable energy storage options to future-proof vehicle production.

This study assumes that future FCEV models would have a fuel cell system in the front or back of the vehicle, and that the hydrogen tank system would be designed to fit where the battery normally would in a BEV.



The results presented in this study are based on the 'best case' scenarios across all 3 technologies, which are: Ni-rich NMC, LFxP & fuel cells

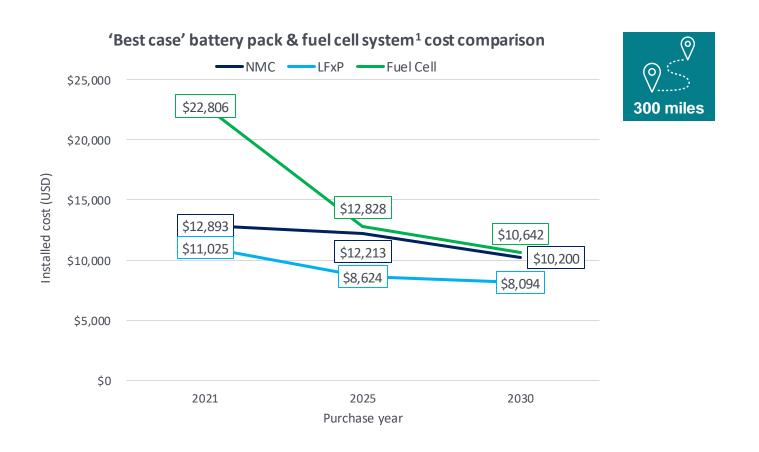
	Technology 2021		2025	2030	Ve
EV	NMC	• 5% silicon anode		NMC9.5.5100% silicon anode2021 material prices	
BE	LFxP	LFP0% silicon anode2021 material prices	LFMP5% silicon anode2021 material prices	LFMP20% silicon anode2021 material prices	La
FCEV		 PEM FC Type IV tanks EoS¹ @ 10,000 units 50% efficiency 	PEM FCType IV tanksEoS @ 100,000 units55% efficiency	PEM FCType IV tanksEoS @ 500,000 units60% efficiency	

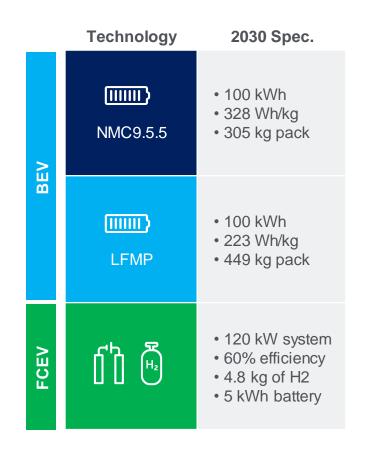
Cost analysis for Large premium SUVs

Large premium SUVs are one of the largest vehicle segments in the light duty category with relatively low vehicle range efficiency but generous packaging freedoms

Large premium SUV	Vehicle	Packaging space dimensions
Length (m)	5.00	2.25
Width (m)	2.00	1.60
Height (m)	1.85	0.15
Mass (kg)	2,500	750

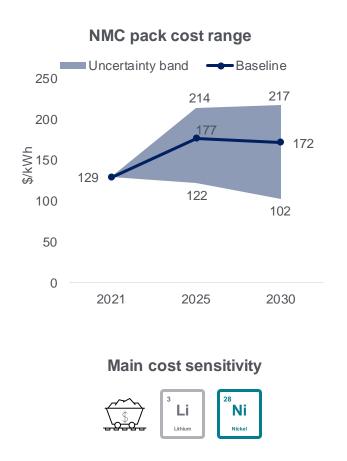
Powertrain attributes	Value
Vehicle efficiency	3 miles per kWh
Minimum range requirement	300 miles
Energy to travel 300 miles	100 kWh
Maximum packaging volume ¹	533 litres
Maximum packaging mass ²	750 kg

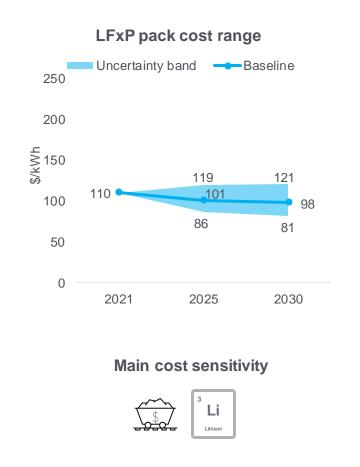

¹ Max packaging volume = 45% vehicle length x 80% vehicle width x 8% of vehicle height


² Max packaging weight = 30% of total vehicle weight

Batteries expected to be the cheapest option for large premium SUVs

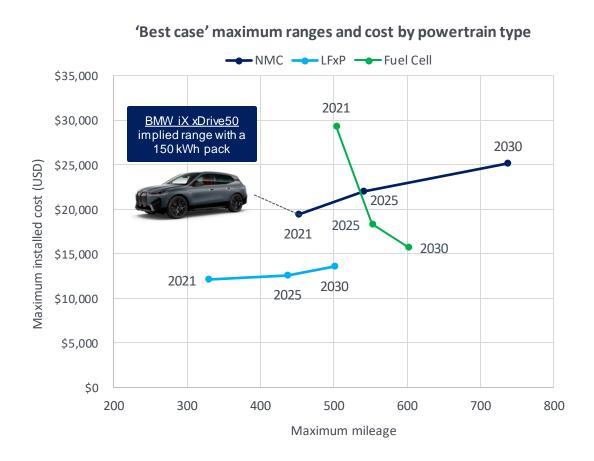
Batteries expected to be the cheapest option for large premium SUVs if the desired range is 300 miles. LFxP battery is cheaper than NMC and can achieve 300 miles





Future cost uncertainty varies across each technology

LFxP and fuel cell systems are expected to have a narrower future cost range. NMC is more exposed to the fluctuations in raw material prices and supplies, resulting in a larger cost spread and uncertainty.



Technology selection can also be based on 'cost per mile' economics

If the powertrain packaging space in a large premium SUV is optimised to achieve the highest range possible, then fuel cells & LFxP are likely to provide the lowest 'cost per mile' by 2030

Battery assumptions

- For NMC and LFxP, continued energy density improvements increase the maximum allowable pack size / range
- The line trends upwards for NMC & LFxP because the increasing battery size is not offset by reduced \$/kWh

	NMC (Pack)			LFxP (Pack)			
	Max kWh	Wh/kg	Wh/l	Max kWh	Wh/kg	Wh/l	
2021	150	201	328	110	146	216	
2025	180	240	383	146	194	301	
2030	246	328	557	167	223	352	

Fuel cell system¹ assumptions

 Cost reduction in FC systems is driven by economies of scale while the range increases due to system efficiency gains

	Fu	iel cell system	Hydrogen storage tanks		
	Max kW Cont. efficiency (%)		Max kg H ₂	Max # tanks	
2021	120	50%	9.8	10	
2025	120	55%	9.8	10	
2030	120 60%		9.8	10	

Under the 'best case' scenarios for all three technologies, LFMP would be the most cost-effective option by 2030

	Technology	Status today	Status in 2030			Future cost uncertaint	у
>	(IIIIIII) NMC	NMC is the leading option for electric 400-mile SUVs ranges, but NMC packs are more expensive than LFP	\$ MILES \$ MILES	Can achieve the highest mileage of all three technology options, but more expensive than LFMP and may struggle to compete with fuel cells	\$ MILES \$ MILES \$ MILES	NMC cells are exposed to lithium, nickel and cobalt price volatility, which means final pack costs are highly sensitive to input material prices	? ? ?
BEV	LFxP	LFP is already a cost- competitive option for 300- mile SUVs, but the pack would be 180 kg heavier than the equivalent NMC pack	\$ MILES	LFMP expected to be the cheapest option for 300-mile SUVs and has the potential to deliver 500 miles at the lowest cost	\$ MILES	LFxP has a much narrower uncertainty band than NMC, and will likely be preferred by high volume SUV OEMs that operate at lower profit margins	?
FCFV		Fuel cell system ¹ are currently uncompetitive from a cost perspective and face significant challenges around hydrogen tank packaging	\$ MILES \$ MILES \$ MILES	Expected to compete closely with NMC for longer-range SUV models, assuming hydrogen tank packaging challenges are overcome	\$ MILES \$ MILES	Future cost uncertainty band is much lower than NMC and similar to that of LFxP. The main cost driver is economies of scale	?

Cost analysis for **Vans**

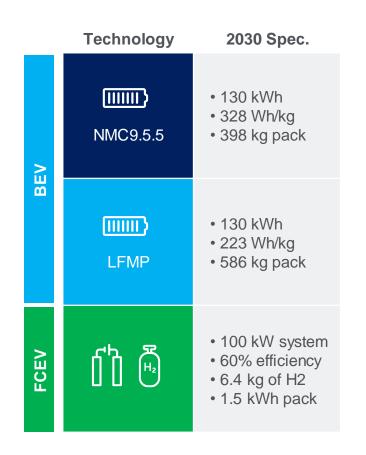
Vans

Vans benefit from generous packaging freedoms but are typically less efficient than large premium SUVs

Van	Vehicle	Packaging space dimensions
Length (m)	5.00	2.25
Width (m)	2.00	1.60
Height (m)	2.10	0.17
Mass (kg)	2,500	750

Powertrain attributes	Value
Vehicle efficiency	2.3 miles per kWh
Minimum range requirement	300 miles
Energy to travel 300 miles	130 kWh
Maximum packaging volume ¹	605 litres
Maximum packaging mass ²	750 kg

¹ Max packaging volume = 45% vehicle length x 80% vehicle width x 8% of vehicle height


² Max packaging weight = 30% of total vehicle weight

Fuel cell systems are likely to be the cheapest option for 300-mile vans by 2030

LFxP batteries are cheaper than NMC and can achieve 300 miles by 2025

Fuel cells systems offer best cost option for long-range vans

By 2030, fuel cells have the lowest installed cost for long-range vans typically doing >400 miles, whereas LFMP batteries would comfortably satisfy the lower range options

'Best case' maximum ranges and cost by powertrain type → NMC → LFxP → Fuel Cell \$30,000 2021 2030 Tovota ProAce \$25,000 implied range with a 150 kWh pack Maximum installed cost (USD) 2025 \$20,000 2021 2025 \$15,000 2030 2021 2030 2025 \$10,000 \$5,000 \$0 200 250 300 350 400 450 500 550 600 Maximum mileage

Battery assumptions

- For NMC and LFxP, continued energy density improvements increase the maximum allowable pack size / range
- The line trends upwards for NMC & LFxP because the increasing battery size is not offset by reduced \$/kWh

	NMC (Pack)			LFxP (Pack)			
	Max kWh	Wh/kg	Wh/l	Max kWh	Wh/kg	Wh/l	
2021	150	201	328	110	146	216	
2025	180	240	383	146	194	301	
2030	246	328	557	167	223	352	

Fuel cell system¹ assumptions

 Cost reduction in FC systems is driven by economies of scale while the range increases due to system efficiency gains

	Fi	ıel cell system	Hydrogen storage tanks		
	Max kW Cont. efficiency (%)		Max kg H ₂	Max # tanks	
2021	100	50%	11.3	9	
2025	100	55%	11.3	9	
2030	100	60%	11.3	9	

Under the 'best case' scenarios for all three technologies, LFxP and fuel cell systems are forecast to be the most cost-effective options by 2030

	Technology Status today		Status in 2030		Future cost uncertainty			
EV	NMC	High-nickel NMC is the cheapest option for 300-mile vans, but limited to 350 miles. Lower mass than LFP favourable for higher payload in vans	\$ MILES \$ MILES	Can achieve the highest mileage of all three technology options, but more expensive than LFMP and fuel cells	\$ MILES \$ MILES \$ MILES	NMC cells are exposed to lithium, nickel and cobalt price volatility, which means final pack costs are highly sensitive to input material prices	? ?	
BE	LFxP	LFP is not a viable option for 300-mile vans today because it can only achieve 252 miles of range. It also faces pack mass challenges	\$ MILES	LFMP expected to be the cheapest powertrain option for vans requiring less than 300 miles of range and where payload is not a priority	\$ MILES	LFxP has a much narrower uncertainty band than NMC, and will likely be preferred by high volume OEMs that operate at lower profit margins	?	
FCEV		Fuel cell systems ¹ are in theory the only viable option today for 400+ mile ranges but command a significant price premium over batteries	\$ MILES \$ MILES \$ MILES	Expected to be the cheapest option for 300+ mile vans by 2030 with the added benefit of having a lighter powertrain for higher payload by mass	\$ MILES \$ MILES	Future cost uncertainty band is much lower than NMC and similar to that of LFxP, but uptake will depend on availability of H ₂ refuelling	② ②	

By 2030, we expect LFMP batteries will be preferred over high-Ni NMC and fuel cells in most large premium SUVs. Hydrogen fuel cells are likely to be more widely adopted in vans.

Desired attribute

2030 technology choice (SUV)

of its lower exposure to input material prices and its

energy density-led range improvements

2030 technology choice (van)

LFxP is the cheapest option in any year and has the Lowest cost ceiling of Cheapest option for Lowest powertrain cost lowest cost ceiling of all 3 technologies all 3 technologies 300-mile+ vans 100% silicon anodes Increased height limit NMC9.5.5 with 100% silicon anodes in 2030 would MILES relative to SUV allows for Highest vehicle range enable a step change in enable >700 miles of range on a single charge energy density more hydrogen storage The combined mass of a fuel cell powertrain is The combined mass of the fuel cell system, hydrogen Lowest powertrain mass / kg \ tanks and supporting power battery is significantly significantly lower than the battery equivalent, providing lower than that of its closest competitor, NMC a key payload advantage in vans It is likely that, by 2030, LFMP will be the preferred It is likely that hydrogen fuel cell systems will be mass option for large premium SUV manufacturers because produced for / by leading van manufacturers to include

Key

in their product offering, as long as investments in

hydrogen refuelling stations occur in parallel

NM

LFxP

Fuel cell

Expected trend

Sensitivities

ADVANCED PROPULSION CENTRE UK

Battery technology progression and material prices

Battery costs are sensitive to technology progression and material prices: LFxP is less sensitive to material prices whereas NMC is greatly affected by nickel price fluctuations

3 scenarios of pack \$/kWh vs energy density (Wh/kg) 250 °°° 2030 2025 ♣ - - ◆ Pessimistic 200 2025 **B**aseline 2030 150 NMC \$/kWh 2021 2025 2030 2021 100 **Optimistic** LFxP ··· • Optimistic 2030 50 0 100 150 200 250 300 350 Wh/kg

Battery assumptions

	NMC Wh/kg (Pack)			LFxP Wh/kg (Pack)			
	Pes.	Baseline	Opt.	Pes.	Baseline	Opt.	
2021	201	201	201	146	146	146	
2025	215	234	240	150	190	194	
2030	234	251	328	162	207	223	

	Lithium hydroxide prices			Nickel sulphate prices		
	Pes.	Baseline	Opt.	Pes.	Baseline	Opt.
2021	\$17/kg	\$17/kg	\$17/kg	\$10/kg	\$10/kg	\$10/kg
2025	\$35/kg	\$22/kg	\$17/kg	\$25/kg	\$17/kg	\$10/kg
2030	\$35/kg	\$22/kg	\$17/kg	\$25/kg	\$17/kg	\$10/kg

	Lithium carbonate prices				
	Pes.	Baseline	Opt.		
2021	\$15/kg	\$15/kg	\$15/kg		
2025	\$33/kg	\$20/kg	\$15/kg		
2030	\$33/kg	\$20/kg	\$15/kg		

Source: APC Technology Trends

Mileage sensitivities in BEVs and FCEVs

While the mileage of BEVs is limited more by the allowable mass for the battery, FCEVs are more volume-constrained when it comes to maximising mileage in 2030

	Technology Sensitivity to mass limit		Sensitivity to height limit	
BEV	NMC9.5.5	Mileage is very sensitive to pack gravimetric energy density, ranging from 234 to 328 Wh/kg	Increasing the height of the battery does not enable further mileage as the mass limit takes priority	
	LFxP	Mileage is very sensitive to pack gravimetric energy density, ranging from 162 to 223 Wh/kg	Increasing the height of the battery does not enable further mileage as the mass limit takes priority	
FCEV		The combined mass of the hydrogen fuel cell system ¹ is significantly within the limit	For each additional cm of height provided, an FCEV could achieve ~50 miles extra in range	

Contact APC for further information

Business Development **Funding enquiry**

Dan Bunting
Head of Business Development
dan.bunting@apcuk.co.uk

Technology Trends **Strategy and supply chain**

Dr Hadi Moztarzadeh

Head of Technology Trends
hadi.moztarzadeh@apcuk.co.uk

Technology Trends

Battery & fuel cell insights

Luke Bates
Automotive Trend Strategist
luke.bates@apcuk.co.uk

Media enquiries to:

Laurah Hutchinson-Strain, Senior PR Manager Clem Silverman, Stakeholder Engagement Lead laurah.hutchinson-strain@apcuk.co.uk clem.silverman@apcuk.co.uk

Sharing this document

This insight report is provided by the Technology Trends team at the APC. When sharing the contents of this document, please reference the Advanced Propulsion Centre (APC) to help others connect with our insights, foresights and support.

If you have any questions or would like more detail email info@apcuk.co.uk

Accelerating Progress

