Transport Energy Network

What does the future hold for thermal propulsion systems and fuels?

Philippa Oldham, Gloria Esposito, Penny Atkins
25 July 2019
Workshop agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00 - 10.30</td>
<td>Arrival & breakfast</td>
</tr>
<tr>
<td>10.30 - 11.00</td>
<td>Welcome and Introduction</td>
</tr>
<tr>
<td>11.00 - 11.25</td>
<td>Fuels policy landscape (Gloria Esposito, LowCVP)</td>
</tr>
<tr>
<td>11.25 - 11.50</td>
<td>Future fuels for flights and freight (Aysha Ahmed, DfT)</td>
</tr>
<tr>
<td>11.50 - 12.15</td>
<td>Decarbonisation of shipping (Richard Bucknall, UCL)</td>
</tr>
<tr>
<td>12.15 - 12.45</td>
<td>Workshop introduction (Penny Atkins)</td>
</tr>
<tr>
<td>12.45 - 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 - 15.15</td>
<td>Workshop sessions</td>
</tr>
<tr>
<td>15.15 - 15.30</td>
<td>Wrap up and close</td>
</tr>
</tbody>
</table>
HELPING THE UK AUTOMOTIVE INDUSTRY CAPITALISE UPON LOW CARBON TECHNOLOGY OPPORTUNITIES

Strategic technologies for the UK auto industry

- Thermal propulsion systems
- Electric machines and power electronics
- Energy storage and energy management
- Lightweight vehicle and powertrain structures
- Intelligent mobility

Road-Mapping Low Carbon Technology Trends

- Identifying Low Carbon Technology-Led Supply Chain Opportunities

Funding Accelerating Development of Low Carbon Technologies

- Supporting & Developing SMEs & Supply Chain

Developing & Linking Industrial & Academic Communities
DEVELOPING AND LINKING INDUSTRIAL AND ACADEMIC COMMUNITIES

- ELECTRIC MACHINES SPOKE
 Newcastle University

- POWER ELECTRONICS SPOKE
 University of Nottingham

- ELECTRICAL ENERGY STORAGE SPOKE
 University of Warwick

- TPS SYSTEM EFFICIENCY
 University of Bath

- DIGITAL ENGINEERING AND TEST SPOKE
 Loughborough University (London)

- TPS THERMAL EFFICIENCY
 University of Brighton
Transport Energy Network

Industry need

Policy & Regulation

Research solutions

University of Brighton
Automotive, Heavy Duty & Off-highway
Challenge for all our transport
The need to decarbonise transport is increasingly urgent…

The Energy/Climate challenge and projected future energy scenarios reveal a significant discontinuity – disruption the likely outcome

- Policymakers in Europe increasingly focused on “Zero” emissions for road transport
- Reducing carbon intensity in other sectors perceived to be more difficult
The Transport Energy Network aims to accelerate decarbonisation through targeted collaboration between fuels, powertrain and energy systems communities

- **Objectives**
 - Understand long term R&D priorities for low carbon fuels and clean efficient thermal powertrains
 - Enhance collaboration between fuel and thermal powertrain developers
 - Develop links to energy systems work and R&D community

- **Scope**
 - Timescale: Now to 2050, Transport Modes: on road, off highway, marine, rail (consider synergies with aero)
 - Liquid and gaseous fuels
 - UK focus, but recognising global supply chain

- **Work programme 2019/20**
 - Four workshops (April, June (x2), November)
 - Deliverable report – cross discipline roadmaps

- Working in collaboration with APC, LowCVP and Automotive Council
Transport Energy Network work programme

2019/20 work programme

- Workshop 1
- Workshops 2 & 3
- Workshop 4
- Report

- April 19 Background for roadmaps
- July 19 – Roadmap detail
- November 19 – Stakeholder review
- March 20 – Roadmap publication and dissemination

2020/21 work programme

- Assess R&D priorities based on roadmaps
- Dissemination
- Feasibility studies (funding dependent)
Workshop sessions this afternoon aim to generate scenarios for the evolution of propulsion, fuels and energy system and highlight cross disciplinary R&D needs
Workshop agenda

- 10.00 - 10.30 Arrival & breakfast
- 10.30 - 11.00 Welcome and Introduction
- 11.00 - 11.25 Fuels policy landscape (Gloria Esposito, LowCVP)
- 11.25 - 11.50 Future fuels for flights and freight (Aysha Ahmed, DfT)
- 11.50 - 12.15 Decarbonisation of shipping (Richard Bucknall, UCL)
- 12.15 - 12.45 Workshop introduction (Penny Atkins)
- 12.45 - 13.30 Lunch
- 13.30 - 15.15 Workshop sessions
- 15.15 - 15.30 Wrap up and close
Transport Energy Network

Low Carbon Fuels Policy Landscape

Gloria Esposito, Head of Projects, LowCVP
gloria.Esposito@lowcvp.org.uk
UK Government has set a long-term vision of ‘net’ zero emissions by 2050

Transport sector will require low carbon liquid and gaseous fuels alongside electrification over the next two decades to achieve the following:

- Decarbonising road transport today, and while alternatives increase
- Decarbonising aviation, shipping and freight – long distance/high energy demand
- Policy has a critical for stimulating the supply and demand for low carbon fuels, whilst ensuring production is low carbon and sustainable.
Taxonomy of low carbon fuels – current and future

Biofuels

- Conventional feedstocks
 - Food and feed crops, including:
 - Maize
 - Sugar cane
 - Rapeseed oil

- Lignocellulosic feedstocks
 - Non-food or feedstocks, including:
 - Energy crops
 - Agricultural residues
 - Biomass fraction of waste

- Novel feedstocks
 - Non-food or feedstocks, including:
 - Algae

RFNBO

Renewable Fuels of Non-Biological Origin – also called E-fuels, Power to Liquid. Includes hydrogen from electrolysis and synthetic fuels.

Low Carbon Fossil Fuels

Low Carbon Fossil Fuels, also called Recycled Carbon Fuel. Derived from recycled gaseous or sold fossil wastes or from waste fossil gasses that are unavoidable (Feed-stocks could be MSW, end of life plastic, industrial fuel gas)

A variety of feed-stocks and pathways exist to produce advanced ‘drop-in’ fuels for HDV, aviation and the marine sectors.

Deployment influenced by production cost, resource availability, sustainability, GHG intensity, fiscal incentives.
Pathways for producing advanced fuels

Majority are in early commercial and demonstration stages, HVO most commercialised.
European Renewable Energy Directive

RED up to 2020

- 10% of transport fuel in Europe to come from renewable energy sources by 2020.
- Feedstocks arising from organic waste and residues counted twice.
- Carbon and sustainability criteria for biofuel production pathway
 - GHG emission **>60% savings** compared to fossil equivalent *(lifecycle methodology)*
 - Sustainability ‘land-use’ criteria – **feestocks should not be obtained from land of high biodiversity value and high carbon stock**
- Compliance demonstrated through voluntary sustainability scheme certification, independently audited.
- Concerns of indirect land-use change (iLUC) impacts and escalating rainforest deforestation due cultivation of crops for biofuel production – safeguards introduced.
Rest can be conventional biofuels (low iLUC), renewable electricity, fuel produced from renewable electricity and fossil waste.

14% total target

1.7% limit on waste oil and fats

3.5% minimum must be advanced biofuels

European Renewable Energy Directive

RED II to 2030

- Transport renewable energy target for Europe increased to 14%
- Advanced biofuel target 3.5% by 2030 – double counted
- GHG savings of 65% as from 1st January 2021
- 7% crop-based biofuels cap
- Capped ‘high iLUC’ biofuels, phased out from 2030
- 1.2x multiplier for aviation and marine
- ‘Low iLUC’ feed-stocks require evidence via certification
Well-To-Wheel GHG emissions (gCO2e/MJ)
(Fuel Production + Fuel Combustion)

Lifecyle GHG Emissions – where are the boundaries?

Feedstock production: land, fertilizer, pesticides, seeds, machinery, fuel

Transport for processing

Biofuel processing: enzymes, chemicals, energy use

Ethanol or biodiesel and co-products

Use in transport

Well-To-Tank

RED lifecycle GHG emission methodology

Tank-To-Wheel

Paramount to take into account the WTW GHG emissions in the quest for a ‘net’ zero carbon future. Efficiency of the fuel production pathway and availability of low carbon electricity will be influential.
Fuel production pathway can have a significant influence of WTW GHG emissions.
International GHG emission reduction - aviation and marine sectors

Aviation

Three routes

- Improving airplane efficiency
- Sustainable fuels - drop-in liquid fuels, bio-kerosene and e-fuels. UK Roadmap created.
 GHG emission and sustainability criteria introduced
- ICAO Carbon Offsetting and Reduction Scheme (CORSIA)
 Voluntary from 2020, mandatory from 2027

International Shipping

- IMO ‘Initial Plan’ for 50% GHG emission reduction by 2050 based on 2008, but little policy as yet.
- Early opportunities for alternative fuels – LNG, hydrogen, biodiesel

Hydrogen in Norway
UK GHG Emission Reduction Transport Policies
Renewable Transport Fuel Obligation – 10yrs of GHG savings

- Legal obligation for UK fuel supplies to supply sustainable renewable fuel – sets mandates
- Incentivises renewable fuel supply through market traded certificates (RFTCs), doubled counted for waste feed-stocks
- Bio-ethanol (E5) and Biodiesel (B7) – 4.6% by volume, (clearly will not meet 2020 target!)
- High blend biodiesel and biomethane use in trucks and buses.

2018 - Biodiesel produced from waste oils, bioethanol from wheat
Average GHG savings 78%
98% certified by a voluntary sustainability scheme
RTFO beyond 2020, supporting advanced fuels

- 2018 DfT introduced their 15yr policy framework – taking into account REDII
- Increased renewable energy target to 14% by 2032.
- New ‘development fuels’ sub target
 - RFNBOs, aviation fuel, advanced biofuels made from waste feed-stocks, substitutes for natural gas by gasification or pyrolysis
 - 0.1% in 2020 to 2.8% in 2032.
 - 2x RTFCs
 - GHG threshold >70% savings
- Sets a crop cap, tightening over time.
- Considering low carbon fossil fuels

Clean Maritime Plan quote – ‘Government will consult in 2020 on how the Renewable Transport Fuel Obligation could be used to encourage the uptake of low carbon fuels in maritime’
Looking ahead – wider sustainability impacts and lifecycle GHG metrics must be taken into account when developing future fuels

Emphasis on land-use sustainability criteria in regulations for biofuels, however new feed-stocks and production pathways require evaluation of potential environmental and societal risks.

Use of feed-stocks such as MSW could undermine recycling
Re-use or recycling is nearly always the best use for a resource from an LCA perspective

Increase reliance on fossil fuels fuels (LCFF)
LCFFs could perpetuate fossil fuel supply chains and prevent progress towards GHG reduction goals

Generate more waste
Using wastes for transport fuel production may increase the value of that waste and incentivise increased production and/or discourage efficiency improvements

Cause other environmental issues
Air quality or water consumption

Voluntary certification for advanced fuels will become increasingly important and require broader range of criteria.
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00 - 10.30</td>
<td>Arrival & breakfast</td>
</tr>
<tr>
<td>10.30 - 11.00</td>
<td>Welcome and Introduction</td>
</tr>
<tr>
<td>11.00 - 11.25</td>
<td>Fuels policy landscape (Gloria Esposito, LowCVP)</td>
</tr>
<tr>
<td>11.25 - 11.50</td>
<td>Future fuels for flights and freight (Aysha Ahmed, DfT)</td>
</tr>
<tr>
<td>11.50 - 12.15</td>
<td>Decarbonisation of shipping (Richard Bucknall, UCL)</td>
</tr>
<tr>
<td>12.15 - 12.45</td>
<td>Workshop introduction (Penny Atkins)</td>
</tr>
<tr>
<td>12.45 - 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 - 15.15</td>
<td>Workshop sessions</td>
</tr>
<tr>
<td>15.15 - 15.30</td>
<td>Wrap up and close</td>
</tr>
</tbody>
</table>
The Transport Energy Network aims to accelerate decarbonisation through targeted collaboration between fuels, powertrain and energy systems communities

- **Objectives**
 - Understand long term R&D priorities for low carbon fuels and clean efficient thermal powertrains
 - Enhance collaboration between fuel and thermal powertrain developers
 - Develop links to energy systems work and R&D community

- **Scope**
 - Timescale: Now to 2050, Transport Modes: on road, off highway, marine, rail (consider synergies with aero)
 - Liquid and gaseous fuels
 - UK focus, but recognising global supply chain

- **Work programme 2019/20**
 - Four workshops (April, June (x2), November)
 - Deliverable report – cross discipline roadmaps

- **Working in collaboration with APC, LowCVP and Automotive Council**
Transport Energy Network work programme

2019/20 work programme

- Workshop 1
- Workshops 2 & 3
- Workshop 4
- Report

- April 19 Background for roadmaps
- July 19 – Roadmap detail
- November 19 – Stakeholder review
- March 20 – Roadmap publication and dissemination

2020/21 work programme

- Assess R&D priorities based on roadmaps
- Dissemination
- Feasibility studies (funding dependent)
Transport Energy Network Workshop 1 output – Discussions covered transport decarbonisation landscape, collaboration and technology

Landscape
- Potential for loss of powertrain engineering skills
- Role of government - Carbon pricing to encourage uptake of low carbon technology, support to resolve chicken and egg dilemma?
- Importance of LCA

Collaboration
- Fuel and engine development separate – both working towards a fixed spec
- Balance cost/GHG of fuel production (variation in spec/impurities) vs effect on powertrain performance – match applications to fuels, considering whole supply chain cost
- Global vs local specification and supply chain

Technology
- View that engine is flexible, whereas fuel production more difficult – tolerant engine
- Map effect of fuel chemistry on engine performance – is there a sweet spot balancing fuel spec range and WTW GHG/cost
- Role for smart technology – communicate what fuel is in use and adjust calibration
This workshop aims to develop insight for cross discipline roadmaps – building on Advanced Propulsion Centre propulsion system roadmaps..

![Technology Roadmap 2017: Thermal Propulsion Systems](image)

Drivers
- Tailpipe CO2 and air quality emission limits
- Trend towards very low CO2 and air quality emissions limits, zero emission zones, LCA

<table>
<thead>
<tr>
<th>TARGETS*</th>
<th>2025 targets</th>
<th>2035 targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light duty brake thermal efficiency (%)</td>
<td>42 %</td>
<td>48 %</td>
</tr>
<tr>
<td>Heavy duty brake thermal efficiency (%)</td>
<td>47 %</td>
<td>55 %</td>
</tr>
</tbody>
</table>

Thermal Efficiency
- Coatings, thermal management and combustion systems designed for low heat loss
- Flexible CR and valve control enabling cylinder deact. & deep Miller/Atkinson cycles
- Efficient, clean combustion e.g. lean burn, HCCI, water injection
- Hybrid-focussed power units e.g. carless engine, fuel cell
- Reduced heat loss e.g. coatings, thermal management, combustion phasing
- Lower temperature combustion e.g. HCCI, PPCI, extreme lean burn NG
- High eff. power units with integrated WHR, e.g. split cycle, high temp. fuel cell
- Exhaust heat recovery from multiple heat sources
- Engine optimised for available fuels i.e. diesel, gasoline, natural gas
- Engine accepting to a wide range of fuels e.g. syngas, H2, advanced fossil

System Efficiency
- Advanced lubrication and lightweighting via design/manuf. and Al, Mg, Ti
- Wide spectrum after-treatment e.g. pre-turbine, low temp. etc., assisted, alt. fuel suited
- Controlled air supply supporting high efficiency combustion e.g. e-boost and multi device
- Aggressive ZE geo-fencing
- On board reforming, CO2 capture
- Multi boost devices for wide map
- Predictive control via V2X
- Fully auto powertrain control, AI
- Electrified light duty ancillaries (48V), reduced parasitic loads
- Controlled air supply supporting high efficiency combustion e.g. e-boost and multi device
- Hybrid systems for effective recovery e.g. 48V, KERS
- Co-developed engine and hybrid system
- Manual transmissions replaced by 10G: speed auto, shift reqm, and e-clutch
- Co-developed HD: focused engine and auto, no torque converter

Design and Manufacturing
- Design for disassembly and recycling
- Next gen. manufacturing incl. additive layer, metal injection moulding, metal foams
- Design for low life cycle impact i.e. incl. embedded impacts
and Automotive Council Energy Roadmaps developed in 2015

TECHNOLOGY ROADMAP 2015: ENERGY AND FUELS ROADMAP

RED/FQD/Air Quality

Security of Supply/Sustainability/Integrated Energy Policies

"Tailpipe" CO2 Requirements

Well to Wheel CO2

Life Cycle based Requirements

-29%

-35%

-50%

-80%

Indicative Energy Mix

Liquid Fossil

Biofuels (including gas)

Electricity

Natural Gas

Subject to sustainable feedstock availability

GASOLINE

Current <E5

Protection grade for E10

E0

E5 + ‘Drop-In’ bio-gasoline (EN228)

Longer Term Protection Grade (if required)

DIESEL

Current <B7

B7 + ‘Drop-in’ Biodiesel (including HVO) (EN590 spec)

ELECTRICITY

Increasing Decarbonisation (direct use dependent on EV/PHEV growth/battery breakthrough)

NATURAL GAS

Natural Gas

HYDROGEN

Depending on GHG benefit/economics

NICHE FUELS

LPG/CNG/LNG/H2/B30/E85 etc
Workshop sessions this afternoon aim to generate scenarios for the evolution of propulsion, fuels and energy system and highlight cross disciplinary R&D needs
The “Three Horizon” model used in business planning is often used to develop more robust longer term roadmaps.

Horizon 1
- Short term evolution or iterations from existing knowledge
- The “first steps” in technology development
- Relatively low risk and based on existing knowledge

Horizon 2
- Links short term (Horizon 1) & long term vision (Horizon 3)
- Provides a Logical route to technology development
- Often the most important part of the roadmapping process

Horizon 3
- The longer term future vision or “ideal” future position
- Meets longer term regulatory and consumer/economic demands
- Assumes step change in technology capability

Aesops Fable “Belling the Cat”

- Its not just the solution - its how to get there that’s important
Workshop sessions this afternoon aim to generate scenarios for the evolution of propulsion, fuels and energy system and highlight cross disciplinary R&D needs

Session 1 – Scenarios for net zero at 2050

- In groups, consider different sectors:
 - Pass car
 - HD
 - Off highway
 - Marine
 - Aviation

- Consider different ways of achieving net zero in 2050

- Consider 2 time periods: 2020 – 2030, 2030 - 2050

- Record your ideas on the flip charts

Session 2 – Enablers for these scenarios

- In groups, consider enablers for the selected scenarios

- You could consider
 - Vehicle technology
 - Infrastructure
 - Policy
 - ….

- Record your ideas on the flip charts
Workshop agenda

- 10.00 - 10.30 Arrival & breakfast
- 10.30 - 11.00 Welcome and Introduction
- 11.00 - 11.25 Fuels policy landscape (Gloria Esposito, LowCVP)
- 11.25 - 11.50 Future fuels for flights and freight (Aysha Ahmed, DfT)
- 11.50 - 12.15 Decarbonisation of shipping (Richard Bucknall, UCL)
- 12.15 - 12.45 Workshop introduction (Penny Atkins)
- 12.45 - 13.30 Lunch
- 13.30 - 15.15 Workshop sessions
- 15.15 - 15.30 Wrap up and close
Workshop sessions this afternoon aim to generate scenarios for the evolution of propulsion, fuels and energy system and highlight cross-disciplinary R&D needs

Session 1 – Scenarios for net zero at 2050

- In groups, consider different sectors:
 - Pass car
 - HD
 - Off highway
 - Marine
 - Aviation

- Consider different ways of achieving net zero

- Record your ideas on the flip charts

Session 2 – Enablers for these scenarios

- In groups, consider enablers for the selected scenarios

- You could consider
 - Vehicle technology
 - Infrastructure
 - Policy
 - ….

- Record your ideas on the flip charts
Workshop agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00 - 10.30</td>
<td>Arrival & breakfast</td>
</tr>
<tr>
<td>10.30 - 11.00</td>
<td>Welcome and Introduction</td>
</tr>
<tr>
<td>11.00 - 11.25</td>
<td>Fuels policy landscape (Gloria Esposito, LowCVP)</td>
</tr>
<tr>
<td>11.25 - 11.50</td>
<td>Future fuels for flights and freight (Aysha Ahmed, DfT)</td>
</tr>
<tr>
<td>11.50 - 12.15</td>
<td>Decarbonisation of shipping (Richard Bucknall, UCL)</td>
</tr>
<tr>
<td>12.15 - 12.45</td>
<td>Workshop introduction (Penny Atkins)</td>
</tr>
<tr>
<td>12.45 - 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 - 15.15</td>
<td>Workshop sessions</td>
</tr>
<tr>
<td>15.15 - 15.30</td>
<td>Wrap up and close</td>
</tr>
</tbody>
</table>
Advanced Fuels Programme: Promoting the Development of Advanced Fuels & Technologies

Demand pull (RTFO)

- Policy certainty to drive investment
- Create a UK market for low carbon transport fuels
- Focus on key fuels

Supply push (advanced competitions)

- Enable investment through capital support
- Facilitate research and development
- Build UK production capacity to satisfy domestic demand
Advanced Biofuel Demonstration Competition (ABDC)

- Launched 2014
- Kick-start a domestic industry
- Advanced technologies
- £25m capital grants available
- Leverage substantial private-sector funding
- Designed to demonstrate technical and commercial viability

Winning Projects

- **Celtic Renewables (withdrawn)**
 Biobutanol, whisky residues

- **Nova Pangaea**
 Bioethanol, forestry residues

- **Advanced Plasma Power**
 Biomethane, MSW
The Future Fuels for Flight and Freight Competition (F4C)

- £22m competition
- Aviation and freight sectors
- Expect up to 4 plants
- £2m project development funding
- Aligns with development fuels sub-target under RTFO
<table>
<thead>
<tr>
<th>Company</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rika Biogas Technologies</td>
<td>Large step-up in scale for use of wet straw for production of liquefied natural gas at existing anaerobic digestion facility.</td>
</tr>
<tr>
<td>Johnson Matthey</td>
<td>Demonstration of Fischer-Tropsch (FT) commercial length reactor for diesel and jet fuel utilising gasification using waste wood and municipal waste.</td>
</tr>
<tr>
<td>Standard Gas</td>
<td>Demonstration of methane production from pyrolysis technology, currently at pilot stage in the UK using RDF and waste wood.</td>
</tr>
<tr>
<td>LanzaTech</td>
<td>Large scale demonstration / first-of-a-kind commercial plant for production of jet fuel from ethanal.</td>
</tr>
<tr>
<td>Progressive Energy</td>
<td>Commercial scale-up of the current APP demo plant using municipal waste and waste wood funded under the DfT’s ABDC.</td>
</tr>
<tr>
<td>Kew Projects</td>
<td>Demonstration of FT diesel production using gasification, using waste wood as a feedstock (potentially RDF).</td>
</tr>
<tr>
<td>Velocys Technologies</td>
<td>Demonstration of FT jet fuel production from post recycling municipal waste gasification.</td>
</tr>
</tbody>
</table>
Company

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rika Biogas Technologies</td>
</tr>
<tr>
<td>LanzaJet</td>
</tr>
<tr>
<td>Kew Projects</td>
</tr>
<tr>
<td>Altalto</td>
</tr>
</tbody>
</table>

F4C Stage 2 - Shortlist

![Map showing locations of companies and projects]
Lessons Learned

- Applied to F4C
- Investment is high risk
- Must allow some flex in project timelines
- Need to address barriers
 - Low oil prices (although recent increase saw an increase in interest level)
 - Technical challenges of converting waste to fuel
 - Engine manufacturers reluctant to use products in their equipment
 - Investment. Investment community uncomfortable with the risk profile; how can we engage the O&G majors?
 - Lack of demonstrable successful operation of the technology
 - Scale-up
 - Lack of wider understanding of different technologies, and where the risks arise and how they can be controlled
Modal strategies are developing

The Road to Zero
Next steps towards cleaner road transport and delivering our Industrial Strategy

Aviation 2050
The future of UK aviation
A consultation

December 2018

IMO
Continue to support
 - Support mechanisms?
Synthetic fuels
Aviation
Research
Thank you

aysha.ahmed@dft.gov.uk
“Powering Ships of the Future”

‘Transport Energy Network’

Richard Bucknall
University College London
There are different types of ships some big...
...and some smaller...
There are about 100,000 ships in the world: Large ships use 2-stoke main engines...

Match propeller speed ≈ 80 rpm (80MW)
Reliable and low maintenance
Fuel efficient ≈ 50% to 55% (170g/kWh)
EGWHR for electrical power
JWWHR for generating fresh water
Reversible
Use HFO; IFO; MDO; (L)NG; other fuels
but 4-stroke engines too…

Propulsion engines:
- mechanical indirect drive
- electrical drive

Electrical generation:
- directly connected

Fuel:
- marine diesel oil
- (L)NG
Including in large electrical propulsion plant...
Ships use a variety of fuel oils…

- **MGO (Marine gas oil including LS)** – Distillate fuel
- **MDO (Marine diesel oil)** – Blend of heavy gas oil and very small amounts of black refinery feed stocks having higher viscosity.
- **IFO 180 (Intermediate fuel oil)** Blend of gas oil and heavy fuel oil having a maximum viscosity of 180 Centistokes/50°C.
- **LS 180** – Low-sulphur intermediate fuel oil with a maximum viscosity of 180 Centistokes/50°C
- **HFO (Heavy fuel oil)** – Pure or nearly pure residual oil.
So the problem is GHG...

- Transport is the largest sectoral emitter of CO₂
- Global shipping:-
 - Emits ≈ 1 billion tonnes of anthropogenic GHG annually
 - accounts for nearly 2.5% of global emissions
 - emissions potentially increase up to 250% by 2050

Source: shipping-world-trade-and-the-reduction-of-co2-emissions. (UNFCCC)
From all the different ship types...

CO2 emissions (millions of tonnes)

- BULK CARRIER: 166
- CHEMICAL TANKER: 55
- CONTAINER: 205
- CRUISE: 35
- FERRIES: 28
- GENERAL CARGO: 68
- OIL (LIQUID) TANKERS: 125
- REFRIGERATED BULK: 18
- RO-RO: 29
- VEHICLE CARRIERS: 25

Data Source: IMO 3rd GHG Study
...even though ships CO2 emissions are modest in comparison...

Source: IMO 3rd GHG Study
…but there is also human health.

The Danish Centre for Energy, Environment and Health (CEEH) found “that European ship emissions were responsible for around 50,000 premature deaths every year”.
...and it isn’t just NOx.

The Danish Centre for Energy, Environment and Health (CEEH) found “that European ship emissions were responsible for around 50,000 premature deaths every year”.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Oxides NOx</td>
<td>Ground ozone formation</td>
<td>Reduce temperature during the combustion process</td>
<td>Aftertreatment technology (e.g. SCR)</td>
<td>Natural Gas</td>
</tr>
<tr>
<td></td>
<td>Respiratory issues</td>
<td>Exhaust Gas Recirculation (EGR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acid rain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur Oxides (SOx)</td>
<td>Respiratory issues</td>
<td>Fuel injection control</td>
<td>Aftertreatment technology (e.g. Scrubbers)</td>
<td>Natural Gas, Low Sulfur Fuels, Bio-Fuels</td>
</tr>
<tr>
<td></td>
<td>Acid rain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate Matter (PM)</td>
<td>Air pollution</td>
<td>Fuel injection control</td>
<td>Aftertreatment technology (e.g. DPF)</td>
<td>Natural Gas, Low Sulfur Fuels, Bio-Fuels</td>
</tr>
<tr>
<td></td>
<td>Respiratory and heart issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons (HC)</td>
<td>Volatile Organic Compounds (VOCs)</td>
<td>Fuel injection control and engine maintenance</td>
<td>Oxidation Catalyst</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>Toxic</td>
<td>Fuel injection control Low load avoidance</td>
<td>Oxidation Catalyst</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>Greenhouse Gas/Global warming</td>
<td>Various measures reducing total fuel consumption per ton-mile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coastal populations are impacted by ships...

World shipping routes and coastal density

Source: marinetrack.com

World Coastal populations…

- 75% of mega-cities are by the sea.
- 40% of population lives within 40 km of the sea.
- 80% of population lives within 60 km of the sea.
So the IMO regulated…

First came NOx…
So the IMO regulated...

First came NOx...

Then came SOx...

Source: IMO
But also came CO2 via a complicated calculation…

\[
EEDI_{simplified} = \frac{\left(\prod_{j=1}^{M} f_j\right)\left(\sum_{i=1}^{n^{ME}} P_{ME(i)} \cdot C_{FME(i)} \cdot SFC_{ME(i)}\right)}{f_i \cdot \text{Capacity} \cdot V_{ref} \cdot f_w} + (P_{AE} \cdot C_{FAE} \cdot SFC_{AE})
\]

- \(C_{FME}\): Non-dimensional conversion factor between fuel consumption measured in grammes and CO\(_2\) emission also measured in grammes.
- \(FC_{ME}\): The certified specific fuel consumption, measured in g/kWh, of the main engines.
- \(P_{AE}\): The required auxiliary engine power to supply normal maximum sea load including necessary power for propulsion machinery/systems and accommodation.
- \(C_{FAE}\): Non-dimensional conversion factor between fuel consumption measured in g and CO\(_2\) emission also measured in g based on.
- \(f_j\): Correction factor to account for ship specific design elements.
- \(P_{ME}\): 75% of the rated installed power (MCR) for each main engine after deducting any installed shaft generator on carbon content for the auxiliary engines.
- \(SFC_{AE}\): The certified specific fuel consumption, measured in g/kWh, of the auxiliary engines.
- \(f_i\): The capacity factor for any technical/regulatory limitation on capacity.
- \(\text{Capacity}\): The amount of cargo being transported.
- \(V_{ref}\): The ship speed, measured in knots, on deep water in the condition corresponding to the Capacity.
- \(f_w\): A non-dimensional coefficient indicating the decrease of speed in representative sea conditions of wave height, wave frequency and wind speed.
So let’s make it easier to understand…

\[
\text{EEDI}_{\text{simplified}} = \frac{\text{Engine Power} \times \text{SFC} \times C_f}{\text{Cargo} \times \text{Speed}}
\]

grammes of CO$_2$ per cargo tonne × mile
But soon it was realised EEDI wasn’t enough...

$$EEDI = \frac{\left(\prod_{j=1}^{M} f_j\right)\left(\sum_{j}^{nM} P_{ME} \cdot C_{FM}\right)}{f_i \cdot C_{Ca}} \cdot \frac{\text{grammes of CO}_2}{\text{cargo tonne} \times \text{mile}}$$

$$EEDI_{simplified} = \frac{\text{Engine Power} \times SFC \times Cf}{\text{Cargo} \times \text{Speed}}$$
So IMO says 50% cut by 2050…

GHG emissions from international shipping to peak and decline

to peak GHG emissions from international shipping as soon as possible and to reduce the total annual GHG emissions by at least 50% by 2050 compared to 2008 whilst pursuing efforts towards phasing them out as called for in the Vision as a point on a pathway of CO₂ emissions reduction consistent with the Paris Agreement temperature goals.

Source: IMO
So IMO says 50% cut by 2050...

News story

Ambitious targets to cut shipping emissions

Clean maritime plan setting maritime zero-emission travel strategy released.

Published 11 July 2019
From: Department for Transport and Nusrat Ghani MP

Source: IMO
Tough to do… but lots of ideas to improve efficiency and reduce emissions…
And alternative fuels too... such as LNG
And some new propulsion systems (hybrid)…
Which need large batteries…
Of course LNG was not too hard a step to make…
- Experience of LNGCs since 1960’s
- Used in boilers and dual-fuel engines

Benefits…
- $\approx 25\%$ reduction in CO$_2$
- No SOx emissions
- Low NOx due to lean burn
- Low particulates
- Available across the world
- Cheap

But it won’t achieve a 50% cut… So what else…????
Low carbon fuels that must be...

- Compatible with the diesel engine
- (Reasonable) Cost
- Wide availability
- High energy density (volume)
- Bunkering (*and de-bunkering*)
- Storage systems onboard
- Onboard fuel processing plant
- Compliant (environmental, toxicity, fire, etc.)
- Safe (SOLAS, etc)
…Perhaps methanol?

- **Positives...**
 - Compatible with ICEs and fuel cells
 - It is available as biofuel
 - It can be synthesized from and CO₂ and Hydrogen
 - Liquid fuel = more simpler storage
 - Experience of methanol handling at sea

- **Negatives...**
 - Low energy content of 19.7 MJ/kg
 - Methanol is hygroscopic
 - Formation of acidic products during combustion potential cause of damage to valves
 - Some health impact
Methanol ships
... or perhaps Hydrogen?

• Positives...
 – Renewables to produce electrolysed hydrogen to be utilised in fuel cells or ICEs
 – Offers the best energy-to-weight storage ratio of all fuels
 – Potential fuel for fuel cells and ICEs
 – Only emission is (potentially) water

• Negatives…
 – Difficult and costly to produce, transport, and store.
 – Compressed hydrogen has a very low energy density by volume
 – Liquid hydrogen requires cryogenic storage at very low temperatures (\(-253^\circ\text{C}\) or 20K) and is costly.
Hydrogen ships
...or perhaps ammonia

- Positives...
 - No carbon atoms
 - Previously used as a fuel
 - Use in ICEs and potentially fuel cells
 - Experience at sea

- Negatives...
 - Gas fuel with potential storage problems
 - Corrosive and toxic
 - Low energy content at 22.5 MJ/kg
Ammonia ships
...or perhaps bio-fuels

• Positives...
 – Marine fuel supply is already contaminated by first-generation biofuels; carefully managed on board ships.
 – Biofuels are potential alternatives to conventional fuels.
 – Synthetic fuels based on higher alcohols and new types of algae and other microorganisms appear attractive.

• Negatives...
 – Volumes (supply) in competing markets
 – Storage and handling of these fuels, and their impact on health, safety and the environment.
Biofuels
Or maybe battery ships?

Zemship, 96 kW PEMFC with battery

Viking Lady, 320 kW MCFC with DE and battery

Mariella, 30 kW HT-PEMFC with DE

Forester, 2009-2017 (phase1), 2017-2022 (phase2), 100 kW SOFC with DE and battery
We just don’t know… but possibly autonomous too… (ref Vara Birkeland)
Thanks for listening.

Various Reports from EPSRC funded projects etc.

News: New UK centre for maritime innovation and technology established

https://marri-uk.org/About-Us